If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+x^2=782
We move all terms to the left:
x+x^2-(782)=0
a = 1; b = 1; c = -782;
Δ = b2-4ac
Δ = 12-4·1·(-782)
Δ = 3129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{3129}}{2*1}=\frac{-1-\sqrt{3129}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{3129}}{2*1}=\frac{-1+\sqrt{3129}}{2} $
| 3(-1)-2b=0 | | 1-(x/7)=3x+1 | | 4/8=u/96 | | y^=15+3.75X | | y^=15+3.75X * | | 3x+9=12+3 | | x-40=25 | | 2x+24=42+18 | | 2.6q-5.3-3.8q=0.2-5.3 | | -10=-6x-2 | | 0.70x+0.05(12-x)=0.10(-85) | | 5x²-10x-22=0 | | 90=2x+130/3 | | X2-3x-15=13 | | -4y-4y=-8y | | 5x+68768676768676=5x+67786 | | 2x-14=124 | | X-4;x=12 | | (2-x)^(2)=(4)/(25) | | 35x2+2x+1=0 | | 6y÷3=15 | | 2m+3/5-m/2=1/3-2m/3 | | (x-15)(4x-15)=9x | | 2m+3/5-m/2=1/2-2m/3 | | 4x4+8=72 | | –2+18k=–16+19k | | Y=3x+2500 | | 6x+60=270 | | 5t2-20t+20=0 | | x²+Y²=37 | | (x+2)(3x+4)(3x+7)(x+3)=2600 | | 4/3=2x/27 |